
Summer Research Report

Benchmarks on the VSoC Simulator
August, 2013

Advised by: Tali Moreshet

Callen Rain & Peng Zhao

1

Callen Rain & Peng Zhao Summer Research Report: Benchmarks on the VSoC Simulator

Contents

1 VSoC 3

1.1 Installation . 3

1.2 Structure . 3

1.2.1 TCDM . 3

1.3 Benchmark Compilation . 3

1.4 Benchmark Execution . 3

1.5 Increase TCDM Size . 3

2 Application Support 4

2.1 Shared Memory Allocation . 4

2.2 Initialization Flags . 4

2.3 Global Pointers . 4

2.4 Shared Memory Allocation . 4

2.5 Barriers . 4

2.6 Locks . 4

3 Benchmarks 5

3.1 Compilation . 5

3.2 Execution . 6

3.3 Summaries . 6

3.3.1 Hello World . 6

3.3.2 Count . 6

3.3.3 Matrix Multiplication . 6

3.3.4 C5 . 7

3.3.5 Patricia . 7

3.4 Skiplist . 8

3.5 Redblack . 8

3.5.1 K-Means . 9

3.5.2 Vacation . 9

3.5.3 Genome . 10

3.5.4 Labyrinth . 11

3.5.5 ScalParC . 12

Page 2 of 12

Callen Rain & Peng Zhao Summer Research Report: Benchmarks on the VSoC Simulator

1 VSoC

1.1 Installation

1.2 Structure

1.2.1 TCDM

1.3 Benchmark Compilation

1.4 Benchmark Execution

1.5 Increase TCDM Size

In VSoC, the default TCDM size is defined to be 0x40,000 Bytes (256 KB). Unfortunately, there are some

particularly ”hungary” applications that require more memory to run. If we run these applications with the

default TCDM size, VSoC will run out of shared memory, and the program will crash.

To solve this problem, we will need to increase the size of TCDM. Here is the procedure:

1). Open vsoc-beta/src/core/config.h , and change CL TCDM SIZE (around line 60) to the desired value.

• Skiplist on a 8-core system needs 0x00080000 Bytes (512KB) to run.

• Skiplist on a 16-core system needs 0x000b0000 Bytes (768KB).

• RedBlack on a 16-core system needs 0x00080000 Bytes (512KB).

• Full version of Patricia needs 0x00400000 Bytes (4MB).

See Sections 3.5, 3.6, and 3.7 for more details.

2). Open vsoc-beta/apps/support/simulator/vsoc.ld

Change the value of STACK TOP (line 6) to 0x08000000 + CL TCDM SIZE - 0x1004.

Change the value of ORIGIN (line 10) to 0x08000000 + CL TCDM SIZE - 0x1000.

For example, if CL TCDM SIZE is set to be 0x00080000, then STACK TOP should be 0x0807effc, and

ORIGIN should be 0x0807f000.

The variables STACK TOP and ORIGIN define the start of the stack. They need to change together

with TCDM size to make sure that the stack is always located at the end of shared memory. See Section

2.1 for more details.

3). Go to the vsoc-beta directory, and run the following command:

student@ubuntu: /vsoc-beta$ source SOURCEME

4). Go to the vosc-beta/scripts directory, and run:

student@ubuntu: /vsoc-beta/scripts$ vsoc clean

student@ubuntu: /vsoc-beta/scripts$ vsoc build -a

5). Clean and recompile the benchmark (to make changes in vsoc.ld effective), and run it on the simulator.

Page 3 of 12

Callen Rain & Peng Zhao Summer Research Report: Benchmarks on the VSoC Simulator

2 Application Support

2.1 Shared Memory Allocation

2.2 Initialization Flags

2.3 Global Pointers

2.4 Shared Memory Allocation

2.5 Barriers

2.6 Locks

Page 4 of 12

Callen Rain & Peng Zhao Summer Research Report: Benchmarks on the VSoC Simulator

3 Benchmarks

3.1 Compilation

In order to compile each of the benchmarks, configure the Makefile to fit the system that you are running

on. Check the environment variables and the compiler. If the compilation of the benchmark fails because a

particular environment is not set, you can either add lines to the .bashrc file which will load the variables

when a particular bash shell is initialized. A sample section from our .bashrc file is shown below. Then

run ”make”. This will create an executable binary file called app.exe in o-optimize/ which is then made

into 4 TargetMem.mem files in the main application directory. These are fed into the simulator when the

benchmark is run.

Listing 1: Sample .bashrc file for environment variables

##

#Following is for VSoC

#root directory of the Vsoc package

5 export VSOC_ROOT_DIR=/home/student/vsoc-beta

#SystemC

export SYSTEMC=/home/student/systemc-2.2.0

export SYSTEMC_HOME=${SYSTEMC}

10 export SYSC_TARGET_ARCH=linux

#echo $SYSC_TARGET_ARCH

export SC_SIGNAL_WRITE_CHECK=DISABLE

#TLM

15 export TLM=/home/student/TLM

export TLM_HOME=${TLM}

export TARGET_ARCHI=linux

--- VirtualSoC Virtual Platform ---

20 export VSOC_SRC_DIR=${VSOC_ROOT_DIR}/src

export VSOC_BUILD_DIR=${VSOC_ROOT_DIR}/build

export VSOC_BIN_DIR=${VSOC_ROOT_DIR}/bin

export VSOC_SCRIPTS_DIR=${VSOC_ROOT_DIR}/scripts

export VSOC_APP_DIR=${VSOC_ROOT_DIR}/apps

25 export VSOC_DOC_DIR=${VSOC_ROOT_DIR}/doc

export PATH=${PATH}:${VSOC_SCRIPTS_DIR}

#Vsoc Binaries:

export PATH="${VSOC_BIN_DIR}:$PATH"

30

#Third-party software

export MICSIM_TRD_PARTY_DIR=${MICSIM_ROOT_DIR}/3rd_party

export LIB_SIMSOC=${MICSIM_TRD_PARTY_DIR}/src/LIBSIMSOC

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${MICSIM_TRD_PARTY_DIR}/lib

35

#UniBo ARM-ELF-GCC

export PATH=/home/student/arm-elf-gcc/install32/bin/:${PATH}

#libGOMP

Page 5 of 12

Callen Rain & Peng Zhao Summer Research Report: Benchmarks on the VSoC Simulator

40 export LIBGOMP_PATH=${VSOC_APP_DIR}/libgomp

#ARM RTEMS

export PATH=/home/student/TMSIM/rtems-cross/bin/:${PATH}

3.2 Execution

To run the benchmark on the simulator, the simulator first needs to know which benchmark you want to

run. Move into the vsoc-beta/bin/ directory and run vsoc set app, which will provide a dialog in which

you can choose a benchmark as the application that you want to run. Make sure to choose 1 binary for each

cluster you would like to run (these benchmarks have only been tested with 1 cluster and 16 cores). When

this script finishes, you can run the main VSoC simulator with a few runtime options. More information on

these options can be found in the documentation for VSoC, found in doc/. A sample execution command

would be:

./vsoc.x -c16 --intc=c

which would run a benchmark with 16 cores and 1 cluster.

3.3 Summaries

3.3.1 Hello World

This benchmark simply prints out a ”Hello World” statement to the screen. It was included in the version

of VSoC that we downloaded and consisted of one line of code that printed a line of code to the screen.

In the summer of 2013, Peng and Callen (Swarthmore College) made a few changes to the benchmark to

test two of the application support functions that we made.

3.3.2 Count

Count is a very basic benchmark that was obtained from Iris Bahar’s Low Power VLSI System Design class

at Brown University. The benchmark is included as an example in a shared memory synchronization lab

for the class. It originally ran on the MPARM hardware simulator. Students are shown the unparallelized

and the parallelized versions of the benchmark and then asked to perform similar modifications to another

application.

In the summer of 2013, we decided to port the benchmark from this lab application on MPARM to the VSoC

system we were working on. It was useful as a simple test of the locks implemented in VSoC (it turned out

that these locks were not completely functional).

The functionality of the benchmark is simple. The cores take turns acquiring a lock for a shared counter.

They increase it by one and release the lock. The final value of the counter is correct if none of the cores

have interfered with each other’s atomic increases.

3.3.3 Matrix Multiplication

Along with hello world, matrix mult is a benchmark that came with the VSoC system from University of

Bologna.

Page 6 of 12

Callen Rain & Peng Zhao Summer Research Report: Benchmarks on the VSoC Simulator

The operation of the benchmark is the multiplication of two arrays. These arrays are defined in matrix.h.

Originally they were generated with MatLab and are sized 16x16.

Matrix multiplication isn’t terribly useful for synchronization tests because the application can simply break

up the matrix into pieces and assign each core to have their own chunk. They can store a local copy of

the arrays and only operate on the part they are assigned to. Since this arrangement doesn’t use locks, the

matrix multiplication benchmark is more useful as a test of the VSoC installation but not in the testing of

transactional memory.

3.3.4 C5

The C benchmark was developed as a microbenchmark was developed by the team from Brown Univer-

sity, Swarthmore College, and University of Bologna in transactional memory research. It utilizes basic

synchronization on a scale much smaller than that of the STAMP benchmarks or even a benchmark like

patricia.

The benchmark functions by performing operations on shared and local arrays. These operations are simple

integer manipulation, and have no practical relevance.

These operations are split into 4 parts in the C benchmark. Each core has a local array and there is also

an array shared by all the cores. The local array just simulates work that doesn’t require synchronization

functionality. The shared array contains several vectors that overlap on each other. Constants such as

the size of the vectors, number of overlap elements, and number of iterations performed are defined at the

beginning of the testbench file.

The locks required for the C benchmark are specifically assigned to certain areas of the array. The layout

for the lock setup is shown in the main source file.

3.3.5 Patricia

The original patricia benchmark was written by Matt Smart from The University of Michigan. His description

of the functionality of the program is provided below:

This code is an example of how to use the Patricia trie library for

doing longest-prefix matching. We begin by adding a default

route/default node as the of the Patricia trie. This will become

an initialization functin (pat_init) in the future. We then read in a

set of IPv4 addresses and network masks from "pat_test.txt" and insert

them into the Patricia trie. I haven’t yet added example of searching

and removing nodes.

This version of Patricia was then ported to the MPARM system simulator used at the Univeristy of Bologna

in research of Transactional Memory Systems. This benchmark is useful because it contains several critical

sections of code. Researchers can test different memory configurations in muti-core and many-core systems

using the patricia benchmark because all the cores will have to share a single data structure.

Finally, in the summer of 2013, Peng and Callen (Swarthmore College) ported thisbenchmark to the Virtual

System on Chip (VSoC) simulator used by Brown University and Swarthmore College in transactional

memory research for many-core clustered systems.

*Important:

Page 7 of 12

Callen Rain & Peng Zhao Summer Research Report: Benchmarks on the VSoC Simulator

We reduced the input buffer size in this version of Patricia, because VSoC’s default TCDM size doesn’t

support large input buffers.

The input buffer size in Patricia is defined by two variables: INITSIZE, which is the number of nodes we

pre-populate in the patricia trie, and BUFSIZE, the number of IP addresses we lookup and insert in the

tree. Larger input buffer leads to a larger Patricia trie, which in turn needs more memory to allocate. The

Patricia benchmark in MPARM had INITISIZE = 1024, and BUFSIZE = 4096. However, this specification

needs a 4MB TCDM to run, while the default TCDM size is only 256KB.

There are two solutions to this problem. We could reduce the input buffer size. If we decrease INITSIZE to

128, and BUFSIZE to 512, then Patricia runs well on VSoC. We could also increase the size of TCDM. See

section 1.5 for more details.

3.4 Skiplist

The original skiplist benchmark was published on http://epaperpress.com as a sorting and searching example.

The descriptions can be found here:

http://epaperpress.com/sortsearch/skl.html

This version of skiplist was then ported to the MPARM system simulator used at the Univeristy of Bologna

in research of Transactional Memory Systems. This benchmark is useful because it contains several critical

sections of code. Researchers can test different memory configurations in muti-core and many-core systems

using the patricia benchmark because all the cores will have to share a single data structure.

Finally, in the summer of 2013, Peng and Callen (Swarthmore College) ported thisbenchmark to the Virtual

System on Chip (VSoC) simulator used by Brown University and Swarthmore College in transactional

memory research for many-core clustered systems.

*Important:

In this benchmark, every core has a privite skiplist, and together they have a shared skiplist. Every skiplist

needs 0x9010 bytes of shared memory, which means the 8-core version needs 0x9010 * (8+1) = 0x51090

bytes, and the 16-core version needs 0x9010 * (16+1) = 0x99110 bytes. However, the default TCDM size

in VSoC is only 0x40000 bytes. So we need to increase the TCDM size in order to run skiplist on 8 or 16

cores. See section 1.5 for more details.

There are also some parameters need to be set inside the benchmark, including PERCENT LOOKUP,

PERCENT INSERT, and PERCENT DELETE. They represent the percentage of lookup, insert, and delete

operations to perform. The default values are lookup = 90%, insert = 9%, and delete = 1%. They can be

found and set at the beginning of testbench.c, and their values will affect the size of critical sections.

3.5 Redblack

The original redblack benchmark was published on http://epaperpress.com as a sorting and searching ex-

ample. The descriptions can be found here:

http://epaperpress.com/sortsearch/skl.html

This version of redblack was then ported to the MPARM system simulator used at the Univeristy of Bologna

in research of Transactional Memory Systems. This benchmark is useful because it contains several critical

sections of code. Researchers can test different memory configurations in muti-core and many-core systems

using the patricia benchmark because all the cores will have to share a single data structure.

Page 8 of 12

Callen Rain & Peng Zhao Summer Research Report: Benchmarks on the VSoC Simulator

*Important:

In this benchmark, every core has a privite redblack tree, and together they have a shared redblack tree.

Every redblack tree needs 0x5010 bytes of shared memory, which means the 16-core version needs 0x5010 *

(16+1) = 0x55110 bytes. However, the default TCDM size is only 0x40000 bytes. So we need to increase

the TCDM size in order to run redblack on 16 cores. See section 1.5 for more details.

There are also some parameters need to be set inside the benchmark, including PERCENT LOOKUP,

PERCENT INSERT, and PERCENT DELETE. They represent the percentage of lookup, insert, and delete

operations to perform. The default values are lookup = 90%, insert = 9%, and delete = 1%. They can be

found and set at the beginning of testbench.c, and their values will affect the size of critical sections.

3.5.1 K-Means

K-means was originally included in Stanford’s STAMP benchmark suite for multiprocessor systems. It was

then ported to the MPARM simulator, and this file documents the changes necessary to run it on the VSoC

simulator developed by researchers from the University of Bologna.

K-means is a clustering algorithms that can cluster a set of vectors into a certain number of groups. For

example, the main input to the benchmark contains 64 vectors with 8 elements each. The system clusters

them into 8 groups. The test input, found in ”goldinput.h”, uses 12 objects each with 2 attributes, and

clusters them into 2 groups.

The algorithm works in two stages. First, random vecors are chosen from the set as the initial cluster

centroids. Then, each vector is assigned to the centroid that is closest to it. The centroid is then recomputed

as the point which minimized the sum of squares distance between the centroid and each of the vectors.

Then the vectors are reassigned again. These two steps are iterated until no vectors switch centroids and

the distance each centroid moves when it is recalculated is reduced to zero.

3.5.2 Vacation

Vacation was originally released as part of the STAMP benchmark suite. It was ported to MPARM in the

summer of 2008 by Trilok Acharya.

From the original README,

This benchmark implements a travel reservation system powered by a

non-distributed database. The workload consists of several client threads

interacting with the database via the system’s transaction manager.

The database is consists of four tables: cars, rooms, flights, and

customers. The first three have relations with fields representing a

unique ID number, reserved quantity, total available quantity, and price.

The table of customers tracks the reservations made by each customer and

the total price of the reservations they made. The tables are implemented

as Red-Black trees."

It would be wise to read Trilok’s README, found in the app directory, for details on how he ported the

original STAMP benchmark to MPARM. In this README, I will only discuss changes that were made by

Peng and I to get the benchmark to run on VSoC. The initial port to MPARM was a much, much larger

project.

Page 9 of 12

Callen Rain & Peng Zhao Summer Research Report: Benchmarks on the VSoC Simulator

3.5.3 Genome

The original genome benchmark was written by Chi Cao Minh from Stanford University. His description of

the functionality of the program is provided below.

This benchmark implements a gene sequencing program that reconstructs the

gene sequence from segments of a larger gene.

For example, given the segments TCGG, GCAG, ATCG, CAGC, and GATC, the

program will try to construct the shortest gene that can be made from them.

For example, if we slide around the above segments we can get:

TCGG

GCAG

ATCG

CAGC

GATC

=============

CAGCAGATCGG

This gives a final sequence of length 11. Another possible solution is:

TCGG

GCAG

ATCG

CAGC

GATC

=============

GATCGGCAGC

This solution has length 10. Both are consistent with the segments provided,

but the second is the optimal solution since it is shorter.

The algorithm used to sequence the gene has three phases:

1) Remove duplicate segments by using hash-set

2) Match segments using Rabin-Karp string search algorithm [3]

- Cycles are prevented by tracking starts/ends of matched chains

3) Build sequence

The first two steps make up the bulk of the execution time and are

parallelized.

References

[1] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford

Page 10 of 12

Callen Rain & Peng Zhao Summer Research Report: Benchmarks on the VSoC Simulator

Transactional Applications for Multi-processing. In IISWC ’08:

Proceedings of The IEEE International Symposium on Workload

Characterization, September 2008.

[2] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper,

C. Kozyrakis, and K. Olukotun. An Effective Hybrid Transactional Memory

System with Strong Isolation Guarantees. In Proceedings of the 34th

Annual International Symposium on Computer Architecture, 2007.

[3] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching

algorithms. IBM Journal of Research and Development, 1987.

3.5.4 Labyrinth

The original labyrinth benchmark was written by Chi Cao Minh from Stanford University. His description

of the functionality of the program is provided below.

Given a maze, this benchmark finds the shortest-distance paths between

pairs of starting and ending points. The routing algorithm used is Lee’s

algorithm [2].

In this algorithm, the maze is represented as a grid, where each grid

point can contain connections to adjacent, non-diagonal grid points.

The algorithm searches for a shortest path between the start and end

points of a connection by performing a breadth-first search and labeling

each grid point with its distance from the start. This expansion phase

will eventually reach the end point if a connection is possible. A second

traceback phase then forms the connection by following any path with a

decreasing distance. This algorithm is guaranteed to find the shortest

path between a start and end point; however, when multiple paths are made,

one path may block another.

When creating the transactional version of this program, the techniques

described in [3] were used. When using this benchmark, please cite [1].

References

[1] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:

Stanford Transactional Applications for Multi-processing. In IISWC

’08: Proceedings of The IEEE International Symposium on Workload

Characterization, September 2008.

[2] C. Lee. An algorithm for path connections and its applications. IRE

Trans. On Electronic Computers, 1961.

[3] I. Watson, C. Kirkham, and M. Lujan. A Study of a Transactional

Page 11 of 12

Callen Rain & Peng Zhao Summer Research Report: Benchmarks on the VSoC Simulator

Parallel Routing Algorithm. Proceedings of the 16th International

Conference on Parallel Architectures and Compilation Techniques,

2007.

3.5.5 ScalParC

Page 12 of 12

